Wastewater Treatment with Magnetic Separation

Los Alamos National Laboratory

Joe Waynert, Coyne Prenger, Laura Worl, Bob Wingo, Tony Ying, Jim Stewart, Dean Peterson

Jon Bernard, Chris Rey, **DuPont**

Mike Johnson, New Mexico State University

CRADA with DuPont established June 17, 2002

FY2003 Project Funding: \$ 60 k (DOE)

\$150 k (DuPont funds-in)

\$100 k (DuPont in-kind)

2003 DOE Annual Peer Review

Washington, DC July 23-25, 2003

Outline

- Overview of HTS Magnetic Separation
- Research Integration
- FY 2003 Results
- FY 2003 Performance
- FY 2004 Plans

Overview - What is Magnetic Separation?

Overview - Why Magnetic Separation?

- Very efficient removal of magnetic particles (kaolin clay, TiO₂)
- Clever chemistry to magnetically capture target molecules
- New market applications wastewater treatment, water purification, medical/biological separations, capture target compound
- Potential near term success heavy metal removal from mine drainage
 - 1000's of mines with heavy metal drainage issues
 - significant market opportunity if cost effective

Overview - Why HTS Magnetic Separation?

- Reduced electrical usage compared to resistive coil technology
- Can be portable with cryogen-free magnet (important for temporary cleanup or remote site)
- Smaller footprint than more conventional technologiespotentially less expensive because less real estate
- Fewer chemicals (safer) ferrite process vs. conventional precipitation technique
- Environmentally friendly ferrite process produces non-hazardous, non-leachable waste
- Cheaper to dispose of waste

Overview - Magnetic Separation SPI Program

- HTS magnetic separator offers significant operational energy savings
- DuPont business plan calls for development of new applications of HGMS that benefit from energy savings
- DuPont capitalizing on LANL's 10 years experience in magnetic separation:
 - process development
 - HTS magnetic separation equipment
 - chemical analytical equipment/expertise
 - multi-disciplinary approach
 - chemists, chemical engineers, magnetics, SC, modeling

Research Integration

- Regular technical interchanges with DuPont, Wilmington
- Collaboration with New Mexico State University
- Jon Bernard, DuPont employee
 - Stationed full-time at LANL
 - fully equipped laboratory at LANL Research Park
 - integrated into LANL magnetic separation team
 - access to LANL analytical equipment & expertise

HGMS A Two-Step Process

Step 1 – Synthesis of slurry

Step 2 – HGMS (high gradient

- Cleaned water is released to the environment
- Sludge is disposed of in a landfill

Step 1 - Magnetite Formation

Step 1 – Formation of Green Rust (GR)

$$Fe^{2+} + 2 Fe^{3+} + 8 OH^{-} \rightarrow GR (solid)$$

<u>Step 2</u> – Dehydration to form magnetite

 $GR (solid) \rightarrow FeOFe_2O_3 (solid) + 4 H_2O$

- FeOFe₂O₃ normally written as Fe₃O₄
- 1 Fe²⁺ : 2 Fe³⁺ stoichiometry necessary
- GR forms readily but has a <u>low magnetic susceptibility</u> and is <u>air (O₂) sensitive</u>
- Dehydration is the Rate Determining Step (RDS)

Formation of Metal Substituted Magnetite

$$M^{2+} + 2 Fe^{3+} + 8 OH^{-} \Rightarrow MO \cdot Fe_2O_3 \text{ (solid)} + 4 H_2O$$

$$\underline{\text{or}}$$

$$Fe^{2+} + Fe^{3+} + M^{3+} + 8OH^{-} \Rightarrow FeO \cdot FeMO_3 (solid) + 4H_2O$$

- M = Metal (ie. Cu²⁺, Mn²⁺, Cd²⁺, Pb²⁺, Ag⁺, As³⁺, etc.)
- Substituted magnetite = <u>Ferrite</u>

Selection of a Method to Synthesize Magnetite/Ferrite

In-situ aerial oxidation:

Produces consistently high quality ferrite

FeSO₄ (solid)
$$\rightarrow$$
 Fe²⁺

$$Fe^{2+} + 2OH^{-} \iff Fe(OH)_{2} \text{ (solid)}$$

$$6 \text{ Fe}(OH)_{2} \text{ (solid)} + O_{2} \text{ (air)} \rightarrow 2 \text{ Fe}_{3}O_{4} \text{ (solid)} + 6 \text{ H}_{2}O$$

Magnetite Phase Diagram

• Difficult to form magnetite below 40°C

Kiyama, M. Bull. Chem. Soc. Jpn. 1974, 47 1646-1650.

Our Approach – Magnetic Seeding

Magnetic seeding – A template effect:

- Produces a suitably magnetic particle
- Allows for magnetic separation
- Green rust can be dealt with post-magnetic separation

Step 1 – Experimental Details

- 1. Take a sample of wastewater and stir
- 2. Add magnetite seed and disperse
- 3. Add Fe²⁺ and dissolve
- 4. Add NaOH to pH ~ 10
- Bubble air through suspension for 15 min
- Can filter to sample solid phase or "cleaned" water for analysis

Wastewater + seed

Green
Rust/Seed
particles after
reaction

FY03 Results Magnetite Seeding Experiments

The experiments:

- 1. 50 ppm seed, 50-1000 ppm Fe²⁺
- 50 ppm Fe²⁺, 50-250 ppm seed

Key findings:

- Seed/GR particle forms with good magnetic response
- Particles suitable for magnetic separation
 - Will allow GR to ferrite conversion after solid/liquid separation

Product Analysis: Converting Green Rust to Ferrite

Solids:

- XRD (X-ray diffraction)
- TCLP test (toxicity characteristic leaching protocol)

Liquid:

• ICP-AES (inductively coupled plasma – atomic emission spectroscopy)

FY03 Results Conversion of Green Rust to Ferrite - Analysis

XRD:

 Magnetite/ferrite present <u>only</u> in the product dried under nitrogen

TCLP:

Product dried under nitrogen passes TCLP test

Findings:

- GR to ferrite conversion is viable after magnetic separation
- Ferrite stability allows for inexpensive disposal in a non-hazardous waste landfill

FY03 Results Does Ferrite Synthesis Remove Typical Metals?

- Initial metal concentrations of 1-30 ppm
- Representative metals chosen (non RCRA)

RCRA = Resource conservation and Recovery Act

 Also works for heavy metals of <u>current</u> interest such as arsenic, lead and cadmium

Residual concentrations meet NPDES limits for

discharge (NPDES = National Pollution Discharge and Elimination System)

Magnetic Separation – Step 2

FY03 Results HTS Magnet

- 624 m of Bi-2223/Ag superconducting tape
- Overall coil dimensions of 18 cm OD, 15.5 cm height and 5 cm ID
- Cooled by a two stage Gifford-McMahon cryocooler
- At 40 K the magnet can generate a central field of 2.0 T at a current of 120 A

FY03 Results Particulate Breakthrough

Seed/GR particle

HGMS

- Breakthrough concentrations measured using a turbidimeter
 - Breakthrough defined as <u>1 ppm</u>
- Seed readily trapped in separator
- GR shears from seed
- Increasing seed/GR stability should increase breakthrough volumes

There are Numerous Separator Performance Variables to be Addressed

- Particle size
- Particle concentrations
- Wastewater pH
- Type of stainless steel wool (ultra-fine to coarse)
- Applied magnetic field strength
- Flow velocity in column
- · Residence time in the column

FY03 Results Effect of the Rate of Air Bubbling During Synthesis

Conclusions

- Need to control rate of air bubbling
- Influences "quality" of seed/GR particle in step 1

FY03 Results Effect of Aging in a Magnetic Field Prior to HGMS

Conclusions:

- Aging in a magnetic field dramatically increases breakthrough volume
- Magnetic aging increases the stability of the seed/GR particle

Seed

FY03 Results Effect of Applied Field

Conclusions:

- Higher field strengths result in larger magnetic forces
- Larger breakthrough volumes at higher field

FY03 Results Effect of Flow Velocity in the Column

Conclusions:

- Breakthrough volume increases with decreasing flow velocity in the column
- But: Process takes longer

FY03 Results Summary

Step 1: Synthesis

- Metals can be removed from wastewater using our ferrite synthetic procedure
- Effluent water can be released to the environment
- Ferrites are environmentally stable and can be disposed of inexpensively

Step 2: HGMS

 Our seeded ferrite process allows us to do a magnetic separation prior to green rust conversion to ferrite

FY03 Performance CRADA Tasks/Deliverables

All CRADA deliverables have been met

- ✓ CRADA established 6/17/2002
- ✓ Jon Bernard hired
- ✓ Lab & office established/equipped in Research Park
- ✓ Determined area/market of focus (CRADA deliverable report)
- ✓ Established feasibility of low temperature ferrite process (CRADA deliverable report)
- ✓ Optimizing HTS process as per CRADA plan

FY04 Plans CRADA Tasks/Deliverables

- Determine controlling parameters and ranges for ferrite process - step 1 (parameter sensitivity evaluation)
- Optimize ferrite & HGMS processes (optimize process for specific application/site, determine how process variables might change for different conditions/application)
- Determine scaling issues from laboratory to pilot plant (quantities of chemicals, processing times, equipment cost)
- Establish pilot plant partner (demonstrate the technology in the field)

